

Introductory training school on

POLLINATOR IDENTIFICATION

Marco **BONIFACINO**, Maarten **DE GROOT**, Simone **FLAMINIO** & Hugo **GASPAR**

GOZDARSKI INŠTITUT SLOVENIJE SLOVENIAN FORESTRY INSTITUTE

FLOWERLAB COIMBRA

OUR ACTIVITIES

DAY 3

MODULE 1 Introductory training school on pollinator identification

IMPORTANCE, MAIN GROUPS, CONSERVATION STATUS AND MONITORING METHODS

Hugo GASPAR

IMPORTANCE

PLANTS WITH FLOWER 90% need animal vectors for pollen transport

CROPS POLLINATED BY INSECTS

75% of the species used by humans

POLLINATION SERVICES

quantity size flavor nutrient content shelf life resistance to pests and diseases

MAIN GROUPS

POLLEN or NECTAR FEEDING

with accidental pollen transport

thousands of species

deposition capacity

deposition capacity visitation rate

- deposition capacity
- visitation rate
- abundance

MAIN POLLINATOR GROUPS

bees Anthophila:Hymenoptera hoverflies Syrphidae:Diptera diurnal butterflies Rhopalocera:Lepidoptera

NEEDS FOR LIFE CYCLES

plant or animal food shelter or nesting places nesting materials

PREDATORS

DAY 2

Simone FLAMINIO & Hugo GASPAR

ONLY FEEDS ON POLLEN OR NECTAR

CARNIVORE LARVAE

PREDATORY LARVAE

PARASITOID LARVAE

CONSERVATION STATUS

LOSS OF HABITAT AND CONNECTIVITY

AGRICULTURAL INTENSIFICATION OR ABANDONMENT

CLIMATE CHANGE

INTENSIFICATION OF HUMAN RELATED DEVELOPMENT

MONITORING METHODS

target group identification level pollen analysis plant type spatial and temporal scales

available workforce

record interaction abundance diversity

OBSERVATION

flower patch transept

OBSERVATION

flower patch transept

plant-poll interaction (visitation rate, behavior) non lethal

no special material

OBSERVATION

flower patch transept

plant-poll interaction (visitation rate, behavior) non lethal

no special material

limited identification (user bias, big insects) mostly hard to fly away species very time consuming

NETTING

targeted sweep

NETTING

targeted sweep

+

specimen selection gets easy to fly away species lab identification

NETTING

targeted sweep

+

specimen selection gets easy to fly away species lab identification

high sampling effortsweep without interactionlethal method (most times)

PAN-TRAP

PAN-TRAP

large spatial and temporal scales gets easy to fly away species lab identification

PAN-TRAP

- large spatial and temporal scales gets easy to fly away species lab identification
- specimen poor condition
 no plant-poll interaction
 bias towards some species
 lethal method

MALAISE-TRAP

MALAISE-TRAP

large spatial and temporal scales gets easy to fly away species lab identification

MALAISE-TRAP

- +
- large spatial and temporal scales gets easy to fly away species lab identification
- specimen poor condition
 no plant-poll interaction
 bias towards some species
 lethal method

WHAT TO CHOOSE ?

plant-poll interaction taxonomic identification visitation rates not bias for some species data/sampling effort ratio

WHAT TO CHOOSE ?

plant-poll interaction taxonomic identification visitation rates not bias for some species data/sampling effort ratio

ENTOMOLOGICAL COLLECTIONS

48516

location with coordinates date of collection collector individual code

location with coordinates date of collection collector individual code

> capture method plant where it was caught on habitat description

PRODUCE KNOWLEDGE

distribution diet taxonomy ecology reference material

C Naturalities St

location with coordinat date of collecti collect individual co

capture method plant where it was caught on habitat description

HOW TO PIN THEM?

HOW TO PIN THEM?

2017. Frost Entomological Museum. SOP 03: Specimen Preparation Guide 1997?. Schauff, M. E.. Collecting and preserving Insects and mites: Techniques and tools

CONSTANT TEMPERATURE AND HUMIDITY, ISOLATED

PERIODIC INSPECTION, IF NEEDED, FREEZING TREATMENTS

CONSTANT TEMPERATURE AND HUMIDITY, ISOLATED

PERIODIC INSPECTION, IF NEEDED, FREEZING TREATMENTS

MODULE 1 Introductory training school on pollinator identification

IMPORTANCE, MAIN GROUPS, CONSERVATION STATUS AND MONITORING METHODS

Hugo GASPAR

